四通道動態(tài)LED陣列近紅外光譜儀 DUAL-KLAS-NIR
日期:2019-05-15 00:00:00

四通道動態(tài)LED陣列近紅外光譜儀

DUAL-KLAS-NIR

同步測量PSII活性(葉綠素熒光)PSI活性(P700

PC(質(zhì)體藍素)Fd(鐵氧還蛋白)的氧化還原變化

image.png


2016年2月Photosynthesis Research雜志發(fā)表了Schreiber博士團隊的研究文章Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer,隆重介紹了DUAL-KLAS-NIR四通道動態(tài)LED陣列近紅外光譜儀。之后2016年4月,2017年3月Schreiber博士團隊再次發(fā)表文章,進一步闡述DUAL-KLAS-NIR的實際應(yīng)用。

作為PSI的電子供體和電子受體,PC(質(zhì)體藍素)和Fd(鐵氧還蛋白)對PSI的氧化還原起著至關(guān)重要的調(diào)控作用。但一直缺乏科學便捷的手段對其運轉(zhuǎn)狀態(tài)進行檢測。集成以DUALl-PAM-100為標志的第二代PAM的基本功能,采用先進的去卷積技術(shù)(一種根據(jù)來源不同對信號進行分離的技術(shù)),WALZ公司推出了可以測量PC和Fd氧化還原狀態(tài)的新一代PAM熒光儀—DUAL-KLAS-NIR四通道動態(tài)LED陣列近紅外光譜儀。

DUAL-KLAS-NIR不但集成了Dual-PAM-100的基本功能,可以同時測量PSP和PSI,而且能夠測量4組不同波段(780-820nm,820-870nm,840-965nm,870-965nm)的信號,實現(xiàn)對P700(PSI反應(yīng)中心)、PC和Fd的氧化還原狀態(tài)分別測量。另外,它還可以測量由540nm和460nm光化光激發(fā)的葉綠素熒光。利用DUAL-KLAS-NIR四通道動態(tài)LED陣列近紅外光譜儀,可以準同步地測量各種不同的信號,不僅在馳豫動力下,還可持續(xù)地在自然穩(wěn)態(tài)下同時獲取各組分的信息。

 

突出特點

?  可測量活體葉片或懸浮液,對P700、PC和Fd分別進行連續(xù)的實時的去卷積分析。

?  同時測量分別由540nm(整個葉片)和460nm(表層細胞層)波段激發(fā)的兩種葉綠素熒光。

?  通過集成發(fā)光二極管技術(shù),獨創(chuàng)高度緊湊的固態(tài)照明系統(tǒng),提供635nm,460nm的光化光和740nm波段遠紅光,以及635nm單周轉(zhuǎn)和多周轉(zhuǎn)飽和閃光。

?  擁有和DUAL-PAM-100相似的光學部件幾何結(jié)構(gòu),可與3010-DUAL兼容,結(jié)合GFS-3000光合儀,在可控條件(光照,溫度,濕度,CO2濃度)下,同步測量氣體交換和電子傳遞相關(guān)的氧化還原。

?  測量光頻率范圍廣(1 - 400 kHz),允許連續(xù)評估Fo,可以在高時間分辨率下記錄快速動態(tài)瞬變(如多相熒光上升動力學或脈沖弛豫動力學)。


主要功能

?  測定質(zhì)體藍素(PC),PS I反應(yīng)中心(P700)和鐵氧還蛋白(Fd)的氧化還原變化。

?  通過應(yīng)用創(chuàng)新的分析方法獲得PC,P700和Fd光譜特征。在線監(jiān)測P700,PC和Fd的氧化還原變化,并確定PC / P700和Fd / P700的比值。

?  可以通過綠色或藍色PAM測量光來激發(fā)熒光。綠光比藍光更深入到葉子中。因此,綠色激發(fā)的熒光包括來自更深葉層的信息,因此非常適合與整個葉子的NIR吸收測量進行對比分析。

?  專業(yè)數(shù)據(jù)記錄軟件,入門特別簡單??墒褂肈UAL-KLAS-NIR軟件的自動測量程序?qū)嶒灒部梢跃庉嬆_本(Script)或者保存手動測量程序(Trigger),輕松執(zhí)行復(fù)雜的測量協(xié)議??勺远x測量動作用于特殊誘導(dǎo)過程動力學曲線數(shù)據(jù)獲取和分析。

?  兼具慢速動力學曲線(飽和脈沖分析、誘導(dǎo)曲線和光響應(yīng)曲線)和快速動力學曲線(飽和脈沖動力學曲線、高達30μs分辨率的馳豫動力學曲線)。

image.png

DUAL-KLAS-NIR軟件近紅外測量光設(shè)置


image.png

同步測量Fluo, P700, PC, Fd慢速誘導(dǎo)動力學曲線



        

應(yīng)用領(lǐng)域

光合作用電子傳遞過程各復(fù)合體的氧化還原狀態(tài)深入剖析,類囊體膜蛋白組分功能研究。

可廣泛應(yīng)用于光合合成生物學研究相關(guān)的植物學,植物生理學,分子生物學,農(nóng)學,林學的領(lǐng)域。


 

應(yīng)用案例

DUAL-KLAS-NIR為光合作用開辟了一個全新的研究領(lǐng)域,實時顯示P700,PC和Fd在活體材料中的氧化還原狀態(tài),在線解卷積氧化還原信號。完美實現(xiàn)PS I及其供體側(cè)和受體側(cè)氧化還原動力學的同步測量,從而了解它們圍繞光系統(tǒng)I的復(fù)雜相互作用,另外還可以探究PS I周圍的循環(huán)電子傳遞的信息。

image.png

在DUAL-KLAS-NIR出現(xiàn)之前,測量光系統(tǒng)I的有效量子產(chǎn)量,P700信號總是會摻雜Fd的貢獻和PC的變量。上圖中圖C顯示了不同光強梯度下甘藍型油菜葉片PSI的有效PSI量子產(chǎn)量Y(I),PSII的有效量子產(chǎn)量Y(II)和經(jīng)PSI熒光修正后的PSII的有效量子產(chǎn)率Y(II)corr。經(jīng)過修正后,Y(II)corr和Y(I)在低光強下相似(小于500μmol m-2 s-1)。然而,當光強大于500μmol m-2 s-1時,Y(I)明顯高于Y(II),Y(I)/Y(II)最高可達1.45.

光系統(tǒng)I的有效天線尺寸測量。植物樣品從在黑暗條件轉(zhuǎn)移到光下時,在PSI附近,首先PC被氧化,開始積累,之后才是P700被氧化。單純的PC信號變化的初始斜率可以用作PS I的有效天線尺寸的度量。


右圖是放大后的PC(紅色)和P700(藍色)初始吸光度變化,顯示了他們初始斜率的巨大差異。對于黑暗適應(yīng)的葉子,轉(zhuǎn)到光下的短時間內(nèi),光系統(tǒng)I受體側(cè)未活化,F(xiàn)d還原的初始斜率也也說明了這一點。
image.png


 

DUAL-KLAS-NIR軟件設(shè)有一個窗口顯示P700和PC氧化還原狀態(tài)的相對變化。該功能可以用來計算PC和P700之間的表觀平衡常數(shù)。這對研究P700與其供體側(cè)的相互關(guān)系是非常重要的。


image.png


 

image.png

 對暗適應(yīng)的葉子施加飽和脈沖,測量Fd氧化還原動力學。我們不難發(fā)現(xiàn),飽和脈沖產(chǎn)生的電子將Fd還原,飽和脈沖之后的黑暗中,F(xiàn)d被緩慢再氧化。之后,PSI的受體側(cè)的電子流被激活,再氧化動力學變得更快。在激活PSI的受體側(cè)之后,可以通過監(jiān)測脈沖后Fd再氧化的速率來研究Fd的暗滅活。這些動力學變化可以通過指數(shù)擬合程序擬合。圖A給出了Fd再氧化動力學曲線指數(shù)擬合程序擬合的實例,圖B顯示了常春藤葉片不同暗適應(yīng)時間后的PSI受體側(cè)的暗滅活動力學差異。


image.png

PC,P700和Fd的最大NIR透射率變化與這些復(fù)合物的在樣品中的含量成比例,并且PC,P700和Fd的消光系數(shù)的比率是恒定的。這可以用于探究不同物種或不同生長條件下(例如陽生/陰生,脅迫/非脅迫)樣品的PC / P700和Fd / P700比率,以及PC和Fd庫的相對大小?,F(xiàn)已觀察到高PC / P700比率與高電子傳遞速率(ETR)值相關(guān)。上圖顯示,在常春藤陽生和陰生葉片中,相對于P700,它們PC和Fd含量有著顯著的不同。


主要測量參數(shù):

?  葉綠素熒光測量:Fo, Fm, Fm’, F, Fo’, Fv/Fm, Y(II), qP, qL, qN, NPQ, Y(NO), Y(NPQ) , ETR(II)等參數(shù),以及各種熒光動力學曲線。

?  P700測量:必須能夠測量Pm, Pm’, Y(I), ETR(I), Y(ND)和Y(NA)等參數(shù),以及各種P700動力學曲線。

?  PC測量:PCm, PCm’, PCox, Rel PCox

?  Fd測量:Fdm, Fdm’, Fdred, Rel Fdred, Fd/PC

?  實時顯示數(shù)據(jù)采集,可以連續(xù)顯示數(shù)據(jù)采集過程即完整的動力學曲線過程

?  軟件程序:慢速動力學曲線,快速動動力學曲線,曲線擬合


產(chǎn)地:德國WALZ


代表文獻

數(shù)據(jù)來源:光合作用文獻Endnote數(shù)據(jù)庫

原始數(shù)據(jù)來源:Google Scholar

2022

Santana-Sánchez, A., et al. (2022). "Flv3A facilitates O2 photoreduction and affects H2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments." New Phytol n/a(n/a).

https://doi.org/10.1111/nph.18506

Lazár, D., et al. (2022). "Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light." Journal of Experimental Botany 73(18): 6380–6393.

https://doi.org/10.1093/jxb/erac283

Lucius, S., et al. (2022). "CP12 fine-tunes the Calvin-Benson cycle and carbohydrate metabolism in cyanobacteria."  13.

https://doi.org/10.3389/fpls.2022.1028794

Khruschev, S. S., et al. (2022). "Machine learning methods for assessing photosynthetic activity: environmental monitoring applications." Biophysical Reviews.

https://doi.org/10.1007/s12551-022-00982-2

Penzler, J.-F., et al. (2022). "Commonalities and specialties in photosynthetic functions of PROTON GRADIENT REGULATION5 variants in Arabidopsis." Plant Physiology.

https://doi.org/10.1093/plphys/kiac362

Appel, J., et al. (2022). "Evidence for Electron Transfer from the Bidirectional Hydrogenase to the Photosynthetic Complex I (NDH-1) in the Cyanobacterium Synechocystis sp. PCC 6803." Microorganisms 10(8): 1617.

https://doi.org/10.3390/microorganisms10081617

Lempi?inen, T., et al. (2022). "Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery." Plant Cell Environ.

https://doi.org/10.1111/pce.14400

Schansker, G. (2022). "Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR." Photosynthesis Research.

https://doi.org/10.1007/s11120-022-00934-7

Burgstaller, H., et al. (2022). "Synechocystis sp. PCC 6803 Requires the Bidirectional Hydrogenase to Metabolize Glucose and Arginine Under Oxic Conditions." Front Microbiol 13: 896190.

https://doi.org/10.3389/fmicb.2022.896190

Rodriguez-Heredia, M., et al. (2022). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.

https://doi.org/10.1093/plphys/kiab550

Wang, Y., et al. (2022). "Pyruvate:ferredoxin oxidoreductase and low abundant ferredoxins support aerobic photomixotrophic growth in cyanobacteria." eLife 11.

https://doi.org/10.7554/eLife.71339 

Niu, Y., et al. (2022). "A plant’s capacity to cope with fluctuating light depends on the frequency characteristics of non-photochemical quenching and cyclic electron transport." bioRxiv: 2022.2002.2009.479783.

https://doi.org/10.1101/2022.02.09.479783 

Schmidtpott, S. M., et al. (2022). "Scrutinizing the Impact of Alternating Electromagnetic Fields on Molecular Features of the Model Plant Arabidopsis thaliana." International Journal of Environmental Research and Public Health 19(9): 5144.

https://doi.org/10.3390/ijerph19095144 

 

2021

Furutani, R., et al. (2021). "The difficulty of estimating the electron transport rate at photosystem I." Journal of Plant Research.

https://doi.org/10.1007/s10265-021-01357-6 

Rodriguez-Heredia, M., et al. (2021). "Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions." Plant Physiology.

https://doi.org/10.1093/plphys/kiab550

Santana-Sánchez, A. (2021). "DYNAMIC REGULATION OF OXYGENIC PHOTOSYNTHESIS IN CYANOBACTERIA BY FLAVODIIRON PROTEINS."

https://www.utupub.fi/handle/10024/152715

Balti, H., et al. (2021). "Differences in Ionic, Enzymatic, and Photosynthetic Features Characterize Distinct Salt Tolerance in Eucalyptus Species." Plants 10(7): 1401.

https://www.mdpi.com/2223-7747/10/7/1401     

Castell, C., et al. (2021). "New Insights into the Evolution of the Electron Transfer from Cytochrome f to Photosystem I in the Green and Red Branches of Photosynthetic Eukaryotes." Plant and Cell Physiology.

https://doi.org/10.1093/pcp/pcab044

Hepworth, C., et al. (2021). "Dynamic thylakoid stacking and state transitions work synergistically to avoid acceptor-side limitation of photosystem I." Nature Plants.

https://doi.org/10.1038/s41477-020-00828-3

Mattila, H., et al. (2021). "Singlet oxygen, flavonols and photoinhibition in green and senescing silver birch leaves." Trees.

https://doi.org/10.1007/s00468-021-02114-x

Miyake, C. (2021). "Photosynthetic Linear Electron Flow Drives CO2 Assimilation in Maize Leaves." International journal of molecular sciences 22.

https://doi.org/10.3390/ijms22094894 

Ohnishi, M., et al. (2021). "Photosynthetic Parameters Show Specific Responses to Essential Mineral Deficiencies." Antioxidants 10(7): 996.

https://www.mdpi.com/2076-3921/10/7/996

Rühle, T., et al. (2021). "PGRL2 triggers degradation of PGR5 in the absence of PGRL1." Nature communications 12(1): 3941.

https://doi.org/10.1038/s41467-021-24107-7

 

2020

Nikkanen L, Santana Sánchez A, Ermakova M, R?gner M, Cournac L, Allahverdiyeva Y: Functional redundancy and crosstalk between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803.BioRxiv

https://doi.org/10.1101/2019.12.23.886929

Shimakawa, G., et al. (2020). "Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer." Photosynthesis Research 144(1): 63-72.

https://doi.org/10.1007/s11120-020-00733-y

Flannery, S. E., et al. (2021). "Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis." The Plant Journal 105(1): 223-244.

https://onlinelibrary.wiley.com/doi/abs/10.1111/tpj.15053

Furutani, R., et al. (2020). "Intrinsic Fluctuations in Transpiration Induce Photorespiration to Oxidize P700 in Photosystem I." Plants 9(12): 1761.

https://doi.org/10.3390/plants9121761

Kato, H., et al. (2020). "Characterization of a giant photosystem I supercomplex in the symbiotic dinoflagellate Symbiodiniaceae." Plant Physiology: pp.00726.02020.

https://doi.org/10.1104/pp.20.00726

Nikkanen, L., et al. (2020). "Functional redundancy between flavodiiron proteins and NDH-1 in Synechocystis sp. PCC 6803." The Plant Journal n/a(n/a).

https://doi.org/10.1111/tpj.14812

Sétif, P., et al. (2020). "Identification of the electron donor to flavodiiron proteins in Synechocystis sp. PCC 6803 by in vivo spectroscopy." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1861(10): 148256.

https://doi.org/10.1016/j.bbabio.2020.148256

Theune, M. L., et al. (2020). "In-vivo quantification of electron flow through photosystem I – cyclic electron transport makes up about 35 % in a cyanobacterium." Biochimica et Biophysica Acta (BBA) - Bioenergetics: 148353.

https://doi.org/10.1016/j.bbabio.2020.148353

 

2019

Kumar V, Vogelsang L, Seidel T, Schmidt R, Weber M, Reichelt M, Meyer A, Clemens S, Sharma SS, Dietz K-J: Interference between arsenic-induced toxicity and hypoxia. Plant Cell and Environment 42: 574-590.

https://doi.org/10.1111/pce.13441

Kadota K, Furutani R, Makino A, Suzuki Y, Wada S, Miyake C: Oxidation of P700 induces alternative electron flow in photosystem I in wheat leaves. Plants 8: 152.

https://doi.org/10.3390/plants8060152

Lima-Melo Y, Gollan PJ, Tikkanen M, Silveira JAG, Aro E-M: Consequences of photosystem-I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. Plant Journal 97: 1061-1072.

https://doi.org/10.1111/tpj.14177

Nikkanen L, Guinea Diaz M, Toivola J, Tiwari A, Rintam?ki E: Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase. Physiologia Plantarum 166: 211-225.

https://doi.org/10.1111/ppl.12914

Sétif P, Boussac A, Krieger-Liszkay A: Near-infrared in vitro measurements of photosystem I cofactors and electron-transfer partners with a recently developed spectrophotometer. Photosynthesis Research 142: 307-319.

https://doi.org/10.1007/s11120-019-00665-2

Telman W, Liebthal M, Dietz K-J: Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function.Photosynthesis Research, in press.

https://doi.org/10.1007/s11120-019-00691-0

 

2018

Nikkanen L, Toivola J, Trotta A, Guinea Diaz M, Tikkanen M, Aro E-M, Rintam?ki E: Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. Plant Direct 2: e00093.

https://doi.org/10.1002/pld3.93

Shimakawa G, Miyake C: Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct 2: e00073.

https://doi.org/10.1002/pld3.73

Takagi D, Miyake C:  PROTON GRADIENT REGULATION 5 supports linear electron flow to oxidize photosystem I. Physiologia Plantarum 164: 337–348.

https://doi.org/10.1111/ppl.12723

Vaseghi M-J, Chibani K, Telman W, Liebthal MF, Gerken M, Schnitzer H, Müller SM, Dietz K-J: The chloroplast 2-cysteine peroxiredoxin functions as thioredoxin oxidase in redox regulation of chloroplast metabolism. eLife 7: e38194.

https://doi.org/10.7554/eLife.38194

 

2017

Schreiber U: Redox changes of ferredoxin, P700, and plastocyanin measured simultaneously in intact leaves. Photosynthesis Research 134: 343–360.

https://doi.org/10.1007/s11120-017-0394-7

 

2016

Klughammer C, Schreiber U: Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer.

Photosynthesis Research 128: 195–214.

https://doi.org/10.1007/s11120-016-0219-0

Schreiber U, Klughammer C: Analysis of photosystem I donor and acceptor sides with a new type of online-deconvoluting kinetic LED-array spectrophotometer. Plant and Cell Physiology 57: 1454–1467

https://doi.org/10.1093/pcp/pcw044


收 藏